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Analytic expressions at 1 AU for the average RMS Electron Density Fluctuation and
the ratio of RMS Electron Density Fluctuation to Electron Density, both as functions of
the observational time scale, are constructed from average spacecraft in situ density
measurements at approximately 1 AU and columnar phase fluctuation measurements over
a wide variety of signal closest approach points. Additionally, the (one-dimensional)
Electron Density Fluctuation spectrum and the Doppler phase fluctuation “‘scale” are
derived, and various extrapolations to the region interior to 1 AU are made.

l. Introduction

Solar Wind modeling is essential for predicting the effects
of the Solar Wind upon spacecraft telecommunications,
particularly for those spacecraft in various phases of Solar
Conjunction. Fundamental to the process of modeling the
Solar Wind is a description of the time-scale-dependent
Electron Density Fluctuation. There now exist substantial in
situ measurements of electron density (as a function of time)
at approximately 1 AU and columnar phase fluctuation
measurements (also as a function of time) at a wide variety of
signal closest approach points, the two of which can be
reconciled and subsequently synthesized to construct “aver-
age” analytic expressions to describe Electron Density Fluctu-
ation. In pursuit of this goal, in situ Electron Density
measurements by the Mariner 5 and Vela 3 spacecraft will be
combined with Viking and Helios Doppler Phase Fluctuation
observations.

Il. The Ratio of RMS Electron Density
Fluctuation to Mean Electron Density

It is convenient to start with a description of the relevant
parameters as in Ref. I:

N, (1,t) = instantaneous electron density, electrons/cm3
r = radial distance
t = time

such that the mean electron density becomes:

1 t
Ne(r) = TJ I\Ie (l’,t)dt
0

and the RMS electron density fluctuation is hence:
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The ratio of “local” electron density fluctuation to mean
electron density is simply defined as:

_ ()
N,
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As was pointed out in Ref. 1, the most frequent abuse of
the parameter € is that it is treated as a constant; in fact, it
must be treated as a function of the time-scale over which the
RMS value is computed:

T, = RMS time-scale

€= E(Tn)

In the following section, the time-scale-dependent form of €
will be obtained at 1 AU.

lll. The Time-Scale-Dependent Form of ¢
at1 AU

The work of Goldstein and Sisco (Ref. 2) shows that the in
situ (one-dimensional) power spectrum of electron density
begins to fall off after one solar rotation, or approximately 2.4
X 10 seconds. For time-averaging periods longer than this,
one would expect the value of € to be nearly constant. To
compute a long-term valué of €, one can use the following:

(1) Mariner 5 data (5 months) (Ref. 2)

N, (1 AU) = 9.2 electrons/cm?
n (1 AU) = 5.6 electrons/cm3
€ (1 AU) =0.609

(2) Vela 3 data (2 years) (Ref. 3)

N, (1 AU) = 7.7 electrons/cm3
n (1 AU) = 4.6 electrons/cm?3
e (1 AU) = 0.597

The following value of € at 1 AU will hence be adopted:
G(Tn) = 0.6
7> 2.4 X 10° seconds

One now desires the value of € for time-scales less than one
solar rotation. The form of the temporal columnar fluctuation
spectrum (P) is well known to be power law with fluctuation
frequency (v):

-K
P(rycy 0
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The average value of K, from Helios and Viking Doppler phase
fluctuations (Ref. 4) is 1:

K,=2.42

One knows (Cronyn, Ref. 5) that if a temporal columnar
fluctuation spectrum is of the form:

-K
P(v)ocy ©
then the equivalent in situ fluctuation spectrum (P, ) will be:

—K, + 1
P (v ©

hence, one writes for the in situ density fluctuation spectrum:

-1.42
Pn(V) oy

The relationship between fluctuation frequency and time-
scale is:

and the relationship between the RMS density fluctuation and
the density fluctuation spectrum is therefore:

[n('rn)] i = an (v) dv
chy—l.zn dv

o« 042

o« 7 042
n

Finally, one arrives at:
= 0.21
n(r) = K 7

for the electron density fluctuation dependence upon 7, at
1 AU. Assuming a constant value of N, at 1 AU and applying

1Coincidentally, ko = 2.42 is the exact average of the six experiments
detailed in Table I of Ref. 4.



the value of e= 0.6 at 7, = 2.4 X 106 seconds, one would have
for e(7,):

T 0.21
e(r) =06 7 < 2.4 X 109 seconds
n 6 n
24X 10

e(r) = 06 7> 2.4 X 10 seconds

Using the average value of N, at 1 AU (Ref. 6):
N, (1 AU)~7.5 electrons/cm?®

one would have for the electron density fluctuation at 1 AU:

T 0.21 3
electrons/cm

n(r ) = 4:5(————24>< o

7, <2.4 X 10® seconds

n(r ) = 4.5 electrons/cm>

T, >2.4 X 10 seconds

For example, considering the time-scale applicable to 60-
second sample interval Doppler noise (15 samples), one has:

T, = 900 seconds
n(900) = 0.86 electrons/cm3
€(900) = 0.11

By way of comparison to actual spacecraft (in situ) results,
one has for a 10%second (~2.8 hours) time scale:

e(10%)=0.19

This is compared in Fig. 1 to typical in situ spacecraft electron
density measurements over 104 seconds.

Combining the ideas presented in this section with the
following nominal electron density model (Ref. 7):

2.39 X 108+ 1.67 X 10°

N =
e(r) 6 £2-30

T

r = heliocentric distance, solar radii

one can obtain the following radially dependent electron
density fluctuation:

T 0.21 8
(7 )= 0.6(—0 {2.39 X 10
2.4 X 108 r®

1.67 X 108
+ O U——

electrons/cm?
[2-30

Tn<.2.4 X 10% seconds

8 6
2.392< 108 1.67X 10 } clectrons/em®

r2.30

n(r )= 0.6{

r
7,> 24X 109 seconds

and additionally, the following radially dependent (one-
dimensional) electron density fluctuation spectrum (P, (v)):

2.39 X 108

6

P (n)=32X10"%" 1-42{
r

L L67X 1090 2cm™® Hz !
r2.30

r>(24X%X10%)7!

P (»=0

v<(2.4x 10%)°!

v = fluctuation frequency, Hz = 7;1

This average spectrum is compared to the Mariner S results of
Ref. 2 in Fig. 2.

IV. The Scale of Doppler Phase Fluctuation

In Ref. 6, the scale for Doppler phase fluctuation is given
as:

043/ a T\1.4
= () o) e

To

where
L = scale, km
a = signal closest approach point

Iy = solar radius

7= Doppler sample interval (Tn =15 X 1), seconds
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Substitution for € yields: and

L(a) = 100 (f“—) (i) km 7 <2.4X 10° seconds
]

60 L7 7 <24X 10° seconds

and hence the Doppler phase fluctuation scale is seen to be:

Lxa L#f(r) 7 >2.4X10° seconds
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Fig. 2. Comparison of the (one-dimensional) electron density
fluctuation spectrum at 1 AU to the actual Mariner 5 proton
density spectrum at approximately 1 AU



